29 research outputs found

    In vivo metabolism of ibuprofen in growing conventional pigs : a pharmacokinetic approach

    Get PDF
    The juvenile conventional pig has been suggested as a preclinical animal model to evaluate pharmacokinetic (PK), pharmacodynamic (PD), and safety parameters in children. However, a lot of developmental changes in pig physiology still need to be unraveled. While the in vitro ontogeny of pig biotransformation enzymes is getting more attention in literature, the in vivo developmental changes have not yet been investigated. Therefore, the aim of the current study was to evaluate the biotransformation of ibuprofen (IBU) in conventional pigs aged 1 week, 4 weeks, 8 weeks, and 6-7 months after a single intravenous and oral administration of 5 mg/kg body weight (BVV) of IBU, using a PK approach in a crossover design for each age group. An ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated to determine 2-hydroxyibuprofen (2OH-IBU), carboxyibuprofen (COOH-IBU), and ibuprofen glucuronide (IBU-GICA) in pig plasma. All three metabolites could be quantified in plasma and the following PK parameters were determined: C-max, T-max, AUC(0 -> 6h), area under plasma concentration-time curve (AUC) ratio between parent drug and metabolite, and the absolute oral bioavailability of the parent drug IBU. The plasma concentrations of the metabolites were always lower than those of IBU. The bioavailability was high, indicating limited pre-systemic biotransformation. The AUC ratio of 2OH-IBU and COOH-IBU/IBU showed a significant increase at 4 weeks of age compared to the 1-week-old and 6- to 7-month-old pigs. Interestingly, the IBUGIcA/IBU AUC ratio did not change with age. The present study demonstrated that the main metabolites of IBU in human are also present in growing pigs. The oxidative phase I metabolism of IBU in growing conventional pigs did change with age. In contrast, age did not seem to affect the glucuronidation capacity of IBU in conventional pigs, although more studies with other substrate drugs are needed to confirm this

    Characterization of porcine hepatic and intestinal drug metabolizing CYP450 : comparison with human orthologues from a quantitative, activity and selectivity perspective

    Get PDF
    Over the past two decades, the pig has gained attention as a potential model for human drug metabolism. Cytochrome P450 enzymes (CYP450), a superfamily of biotransformation enzymes, are pivotal in drug metabolism. Porcine CYP450 has been demonstrated to convert typical substrates of human CYP450. Nevertheless, knowledge and insight into porcine CYP450 quantity and substrate selectivity is scant, especially regarding intestinal CYP450. The current study aimed to map the quantities of hepatic and intestinal CYP450 in the conventional pig by using a proteomic approach. Moreover, the selectivity of the six most common used probe substrates (phenacetin, coumarin, midazolam, tolbutamide, dextromethorphan, and chlorzoxazone) for drug metabolizing enzyme subfamilies (CYP1A, CYP2A, CYP3A, CYP2C, CYP2D and CYP2E respectively), was investigated. Hepatic relative quantities were 4% (CYP1A), 31% (CYP2A), 14% (CYP3A), 10% (CYP2C), 28% (CYP2D) and 13% (CYP2E), whereas for the intestine only duodenal CYP450 could be determined with 88% for CYP3A and 12% for CYP2C. Furthermore, the results indicate that coumarin (CYP2A), midazolam (CYP3A), tolbutamide (CYP2C), and dextromethorphan (CYP2D) are as selective for porcine as for human CYP450. However, phenacetin (CYP1A2) and chlorzoxazone (CYP2E1) are less selective for the specific enzyme, despite similarities in selectivity towards the different enzymes involved compared to humans

    Postnatal maturation of the glomerular filtration rate in conventional growing piglets as potential juvenile animal model for preclinical pharmaceutical research

    Get PDF
    Adequate animal models are required to study the preclinical pharmacokinetics (PK), pharmacodynamics (PD) and safety of drugs in the pediatric subpopulation. Over the years, pigs were presented as a potential animal model, since they display a high degree of anatomical and physiological similarities with humans. To assess the suitability of piglets as a preclinical animal model for children, the ontogeny and maturation processes of several organ systems have to be unraveled and compared between both species. The kidneys play a pivotal role in the PK and PD of various drugs, therefore, the glomerular filtration rate (GFR) measured as clearance of endogenous creatinine (Jaffe and enzymatic assay) and exo-iohexol was determined in conventional piglets aging 8 days (n = 16), 4 weeks (n = 8) and 7 weeks (n = 16). The GFR data were normalized to bodyweight (BW), body surface area (BSA) and kidney weight (KW). Normalization to BSA and KW showed an increase in GFR from 46.57 to 100.92 mL/min/m2 and 0.49 to 1.51 mL/min/g KW from 8 days to 7 weeks of age, respectively. Normalization to BW showed a less pronounced increase from 3.55 to 4.31 mL/min/kg. The postnatal development of the GFR was comparable with humans, rendering the piglet a convenient juvenile animal model for studying the PK, PD and safety of drugs in the pediatric subpopulation. Moreover, to facilitate the assessment of the GFR in growing piglets in subsequent studies, a formula was elaborated to estimate the GFR based on plasma creatinine and BW, namely eGFR =1.879 × BW^1.092/Pcr^0.600

    Gastrostomy tube placement via a laparotomic procedure in growing conventional piglets to perform multi-dose preclinical paediatric drug studies

    No full text
    The use of juvenile conventional pigs as a preclinical animal model to perform pharmacokinetic (PK), pharmacodynamic (PD) and safety studies for the paediatric population is increasing. Repetitive oral administration of drugs to juvenile pigs is however challenging. A representative method which can be used from birth till adulthood is necessary. The current study presents the placement and use of a gastrostomy button in pigs with a weight ranging from 2.4 to 161 kg. The surgical placement was performed via a laparotomic procedure on, each time, 12 pigs (six male, six female) of 1 week, 4 weeks, 8 weeks and 6-7 months old. For every age category, eight pigs were part of a PK study with a non-steroidal anti-inflammatory drug (NSAID) and four pigs served as a control group. No severe complications were observed during surgery. The button remained functional for 10 days in 40 out of 48 pigs. No significant differences in body temperature or white blood cell count were observed during the trial. Three control pigs showed signs of inflammation indicating a NSAID might be warranted. Autopsy revealed minimal signs of major inflammation in the abdominal cavity or the stomach. A limited number of pigs showed mucosal inflammation, ulcers or abscesses in the stomach or around the fistula. These results indicate that the laparotomic placement of a gastrostomy button might be considered safe and easy in growing pigs to perform repetitive oral dosing preclinical studies. However, the method is not advised in pigs weighing more than 100 kg

    Simultaneous measurement of glomerular filtration rate, effective renal plasma flow and tubular secretion in different poultry species by single intravenous bolus of iohexol and para-aminohippuric acid

    Get PDF
    Simple Summary The aim of this study was to investigate the simultaneous measurement of two different renal markers (iohexol and p-aminohippuric acid) in the plasma of different poultry species as the gold standard method. The two markers reflect three different renal processes: glomerular filtration, effective renal plasma flow, and tubular secretion. The rate at which the kidneys filter blood is called the glomerular filtration rate. The effective renal plasma flow is the volume of plasma that reaches the kidney per time unit. Tubular secretion can be defined as active transport from the peritubular capillaries to the renal tubules. A moderate correlation was observed between tubular secretion and the glomerular filtration rate. A good correlation was demonstrated between the effective renal plasma flow and the glomerular filtration rate. This might be useful to model both renal processes. This approach could support the further development and validation of clinical renal biomarkers. These markers can be useful in the case of a chronic renal disease or renal failure, for which repeated evaluations of the renal function are required. The aim of the current study was to investigate the simultaneous measurement of plasma p-aminohippuric acid (PAH) clearance as a potential marker to assess effective renal plasma flow (eRPF) and tubular secretion (TS), and the plasma clearance of iohexol (IOH) as a marker of the glomerular filtration rate in poultry species. The PAH was administered intravenously (IV) to broiler chickens, layers, turkeys, Muscovy ducks, and pigeons. Each animal received successively a single bolus dose of 10 mg PAH/kg bodyweight (BW) and 100 mg PAH/kg BW to assess the eRPF and TS, respectively. Simultaneously with both PAH administrations, a single IV bolus of 64.7 mg/kg BW of IOH was administered. A high linear correlation (R-2= 0.79) between eRPF, based on the clearance of the low dose of PAH, and BW was observed for the poultry species. The correlation between TS, based on the clearance of the high dose of PAH, and BW was moderate (R-2= 0.50). Finally, a moderate correlation (R-2= 0.68) was demonstrated between GFR and eRPF and between GFR and TS (R-2= 0.56). This presented pharmacokinetic approach of the simultaneous administration of IOH and PAH enabled a simultaneous evaluation of eRPF/TS and GFR, respectively, in different poultry species
    corecore